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LE'ITER TO THE EDITOR 

Analytic simulation of the PoincarC surface of sections for the 
diamagnetic Kepler problem 

H Hasegawa, A Harada and Y Okazaki 
Department of Physics, Kyoto University, Kyoto 606, Japan 

Received 20 August 1984 

Abstract. The Poincart surface-of-section analysis which we previously reported on the 
diamagnetic Kepler problem (classical hydrogen atom in a uniform magnetic field) in a 
transition region from regular to chaotic motions is simulated by an analytic means, by 
taking intersections of the energy integral and the approximate integral A of Solovev to 
obtain sections of the two separate regions of the motion that exist in the limit of a weak 
magnetic field ( B  + 0). The origin of the unique hyperbolic point and the separatrix around 
which the onset of chaos takes place are thus identified. The invariant tori arising near 
the full chaos are shown to be simulated by this method but with modified parameter 
values in the expression A. 

The experimental indication by Zimmerman et a1 (1980) and the theoretical consider- 
ation by Clark and Taylor (1980) about the existence of an approximate third integral 
in the problem of non-integrable Hamiltonian dynamics of hydrogen in a uniform 
magnetic field stimulated a number of further investigations of the quantum mechanical 
energy (or, optical) spectra of diamagnetic Rydberg atoms in search of a possible 
regularity (Castro et a1 1980, Delande and Gay 1981, Delande et a1 1982, Robnik 1981, 
Clark 1981, Solovev 1981, Hemck 1982, Sumetskii 1982, Delos et al 1983). 

The first concrete presentation of the third integral was admittedly due to Solovev 
(1981, 1982), who obtained the form 

A=4(A: +A:) - A: (1) 

A = p  x ( r  x p )  - r / r .  (,2) 

where A is the Runge-Lenz vector given by 

His derivation was based on the method of perturbation average in classical mechanics 
(Amold 1979). By putting the form A in (1) into a scheme of semiclassical quantisation 
of the motion of the polar angle B in the usual polar coordinate system, Solovev 
found that in the limit of a weak magnetic field there exist two separate regions of the 
Kepler motions. One of these corresponds to A > 0 of a rotational nature and the 
other to A < 0 of a librational nature, reflecting a neutation and an oscillation, respec- 
tively, of the Runge-Lenz vector (Delande et a1 1982). This feature was confirmed by 
a subsequent quantal formulation by Herrick (1982) and a more elaborate classical 
analysis by Delos et a1 (1983). 

The purpose of this letter is to show that the very existence of the separate motions 
mentioned above, if considered as the unperturbed motion on which the magnetic field 
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acts as perturbation, gives rise to chaos inherent in such non-integrable Hamiltonian 
dynamics. This will be seen from an analytic construction of the PoincarC surface of 
section by using Solovev’s approximate integral and comparing it with our previous 
result, in which we exhibited a transition of the solution of the equations of motion 
from its regular behaviour to a chaotic one (Harada and Hasegawa 1983). We will 
argue using numerical evidence that a more general form for A than ( l ) ,  i.e. 

k 2 A  = ( 1 - k 2 ) (  A: + A ; )  - k2Ai (3) 

( k 2  = f yields Solovev’s form (2)), may be of use for the approximate integral relevant 
to the strong mixing regime where the dynamics is almost chaotic. 

The full Hamiltonian for the Kepler motion in a uniform magnetic field B is given 
in the cylindrical coordinate system ( pz+ ; pppzp+)  by 

H = f( p’, + p t )  +$m2p-2 + f m B  +fB2p2 - ( p 2  + z ’ ) ” ’ ~  

= f( p’, + p i )  + f ~ - ~ (  m + ~ B P ’ ) ~  - ( p 2  + z ’ ) ” ’ ~  (4) 

where m denotes the value of the momentum p+ (angular momentum z-component 
// B )  conjugate to the cyclic variable q5 so that 

p 2 d  = p+ +&Bp2 = m +fBp2,  ( 5 )  

and the unit of B is assumed such that the cyclotron energy hw, is measured in R, 
(twice Robnick’s number (Robnick 1981)). Thus, the system represented in the 
Hamiltonian (4) is of two degrees of freedom, and hence every trajectory of the 
associated equations of motion with a constant energy E lies in a three-dimensional 
hypersurface of the four-dimensional phase space ( p ,  ppr z, p z ) ,  which must be filled 
with a number of two-dimensional tori (so-called invariant, or KAM tori), provided 
the system is an integrable one. For example, in the absence of the magnetic field i.e. 
B = 0, the Hamiltonian (4) is separable (the corresponding Hamilton-Jacobi equation 
is decomposed into two independent ones) in terms of the polar coordinate system, 
and hence it is integrable. 

Reinhardt and Farrelly ( 1982) stressed the conceptual difference between the 
separability and the integrability of Hamiltonian systems, saying that the latter concept 
includes a much wider class of systems than the former. Thus, the existence of an 
approximate integral at least in a restricted range of relevant parameters (here, the 
energy parameter E or the field strength B )  implies that the system belongs to an 
integrable one in the same range, although the Hamiltonian is non-separable. The test 
of such an approximate integrability for Hamiltonians of two degrees of freedom by 
means of the PoincarC surface-of-section analysis was initiated by HCnon and Heiles 
(1964), but the application of it to the diamagnetic Kepler problem (4) has been made 
only recently (Robnik 1981, Reinhardt and Farrelly 1982, Harada and Hasegawa 1983). 
Robnik’s result did not contain the special case m = 0; the case is easier than m # 0 
from a conceptual point of view but harder from the computer-technical one, and the 
Reinhardt-Farrelly result was this m = 0 case in the parabolic coordinate representation 
that differs from the surface of section chosen by Robnik and also by us. 

Our results of computer experiments are shown in figure 1. The series 1 a, b, c .  . . 
represents the PoincarC map taken on the surface of section z = 0 of the p p  - p plane 
provided by the previous numerical integration of the equations of motion with H in 



Letter to the Editor L885 

Figure 1. The PoincarC surface of section of z = 0, p p  - p plane in the cylindrical coordinate 
system for the diamagnetic Kepler motions: ( a ) ,  ( b ) ,  (c), are those computed by integrating 
the equations of motion, and (a)’,  (b)’ ,  (c)‘ are those simulated analytically as indicated 
in the text. (a)-(  a’) m = 0, B = 2, E = -1  ; k2 = f for the simulation (b)-( b’) m = 0, B = 2, 
E = -0.7; kZ = 0.25 (e)-(c‘) m = 0, B = 2, E = -0.3; k2 = 0.8. 

(4), where the values of m and B are fixed and the energy E is varied: 

m =o, B = 2  ( y = 2 cf Harada and Hasegawa 1983) (6) 

(a)  E =- I ,  ( b )  E = -0.7, (c) E = -0.3 (in atomic units). (7) 

The magnetic field strength indicated in (6) is unrealistically large (B = 4.7 x lo5 T), 
but, as we have noted before (Harada and Hasegawa 1983, Hasegawa et a1 1983), 
there exists an exact scaling relation between the two constants of motion and the 
magnetic field strength: Let X be a measurable quantity of the hydrogen atom (e.g. a 
spectral intensity) that may depend on E, m and B. Then 

X ( E ;  m ; B ) = X ( B - 2 / 3 E , B 1 / 3 m ;  1). (8) 
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In particular for m = 0, the function X of E and B must be a single-variable function 
X ( B - ‘ 1 3 E ) .  Therefore, the value of X for B = 1T (e.g. in figure 1 referring to (7) )  can 
be seen from X for B = 106T by reducing the energy E by a factor of ( 1 0 6 ) p 3  = 
This means that the situation in figure 1 actually corresponds to the principal quantum 
number n of the order of 100 for B = 1T (or, n - 60 for B = 4T), that is in the range 
of energy where the optical spectrum behaves irregularly far beyond the quadratic 
Zeeman regime (Clark and Taylor 1980). 

We have computed analytic simulation curves on the z = 0 surface of section by 
taking each intersection of the energy integral H = E and the approximate integral h 
in ( 1 )  (or, more generally in (3) with k2 different from Solovev’s value f )  with A being 
changed, which are exhibited in the series 1 a‘b‘c‘ . . . in comparison with 1 abc. . .. A 
typical comparison in the literature is the simulation of the Poincark map for the 
HCnon-Heiles system by Gustavson using the transformation to a normal form (Gustav- 
son 1966). We note that Gustavson’s method is not directly applicable to the Kepler 
problem because of the non-polynomial potential and also because of the special 
degeneracy of the period for the unperturbed motion (1 : 1 rational winding number). 
Our result may, however, be looked upon as the lowest order transform of Gustavson, 
since the approximate invariant is a quartic function of the momentum variable as can 
be seen from ( 2 ) .  It is important to note that this simplest way of constructing the 
surface of section can simulate the essence of the PoincarC map for the diamagnetic 
Kepler motion deduced from the direct integrations; the unique hyperbolic point H 
and a pair of separatrix lines through it that separate the two regions of the map. It 
is not obvious in our problem that chaos arises in increasing the parameter E or B 
associated with this separatrix in view of the usual homoclinicity argument (another 
hyperbolic point fi counter to H cannot be located in the present analysis-it could 
be the mirror image of H on the fictitious negative p-axis due to the formal symmetry 
of the Hamiltonian (4)). 

Undoubtedly, however, the onset of chaos takes place around the separatrix by 
inspection in figure l (b) ,  and one sees that the chaotic motions are those trajectories 
which wander in both regions. Thus, the existence of Solovev’s two regions of the 
diamagnetic Kepler motion valid precisely for the limit B + 0 but intermixing between 
them for non-zero B actually produces chaos. A precise correspondence of the separate 
regions in phase space, outside and inside of the Solovev cone, to those mapped onto 
the z = 0 surface of section deduced by numerical integrations has been confirmed 
analytically, a detail of which will be given below. 

Our procedure to deduce the intersection formula for drawing figure la’b’c’ is as 
follows: for the concept of ‘approximate integral’ beyond the perturbation regime, the 
form (3)  will be used with an unspecified k2, and besides the Lenz vector A will be 
modified such that 

A = u x ( r  x u )  - r / r ,  u = p  +fB x r. (2’) 
This is for convenience, because together with the similar modification of the angular 
momentum, L= r X U, an exact identity holds: 

E is the total energy, the 
magnetic part inclusive 

A’= 1 +2EL2 ( 9 )  

The coefficient value kZ in (3) should be determined so that the secular part of A is 
eliminated: following the method of average, we take 

1 - k2 = (A, dA,/dt)/(A * dA/dt), (10) (dA/dt) = 0 or 
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where the average is taken over a (quasi) periodic orbit whenever it is defined. For 
example, it can be proved that if the average is taken over a Kepler ellipse then 
Solovev's value k2 = f is deduced if terms O ( B 3 )  are discarded. Let the form (3)  be 
expressed in terms of the cylindrical coordinates on the z = 0 surface of section by 
using L2 = p 2 p t  + p4d2 and AI = p p p p z .  By eliminating p ;  from the energy integral, 
together with the relation (9), we get a quartic equation for pp as follows: 

2 2  2 

+ { 1 + a [ p 2 d 2  - 2 ( E  + p- ' ) ] }pE + bp- '+p2d2  - 2 ( E  + p - ' )  = O  ( 1 1 )  

(12) 

where d2 is given from ( 5 )  and 

U = [ -2E( 1 - k 2 ) ] - ' ,  b = [-2E( 1 - I C * ) ] - ' [  1 - k2(  1 + A)] - ( p4d2). 

We needed an unavoidable averaging for the expression b in (12) that makes b a 
constant parameter: it is necessary because p z  = 0 must result automatically at a specific 
value of b( = 0) that yields the outer-most contour of each map corresponding to the 
maximal allowed A. In the limit B + 0, p4d2 + m2 so that a root of the quartic equation 
(1 1) for pp yields an exact map of the Solovev cone, inside and outside of it, onto the 
structure of the z = 0 surface of section. The intersection formula (1 1) in this situation 
( k 2  = f )  reduces to 

(UP:  + $ p t  +3a- ' )p2-2(apt  + l ) p  + f a ( 4 - A ) = 0 .  (13) 

This quadratic equation for p has the discriminant 

D = f a 2 (  1 + A)[pE +& la - ' (  1 +A)-']( + U - ' ) ,  

from which it can be seen that 

the cone. 

ated by a zone, which correspond to two insides of the cone. 

These are illustrated in figure 2. 

( i)  0 < A < 4; D > 0 two different real roots of p, which corresponds to outside of 

(ii) -1 < A < 0; D S 0 for p :  S -$ha- ' (  1 + A ) - '  two different real roots of p separ- 

(iii) A = 0; D = 0 two separatrix lines meet at the point p =$a  (the hyperbolic point). 

P 

0 

Figure 2. Exact geometrical correspondence of Solovev's hyperbola 4(A: +A:)  - Ai = A 
onto the surface of section given in figure I for B + 0 (schematic), explained in the text. 

The most significant point of our results in figure 1 is that invariant tori still remain 
even in the almost chaotic regime ( 1  c ) ,  which are located near the outer-most contour. 
This contour corresponds to the limit of the PoincarC mapping series for A + A,,, 
( b  + 0 as stated above), so that the existence of the undestroyed tori there implies the 
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discrete quantal spectra specified by the quantum number A - Amax (the flattest situation 
of the A-vector): Thus, this will yield a qualitative understanding of the resonance 
phenomena (quasi-Landau resonance) discussed by Fano (1983), although more is to 
be done for the complete solution. Finally, we note that a numerical indication has 
been obtained about the behaviour of k2 in (3) and (10): k2 increases at the transition 
region to chaos so that 

E -0, or B-m 
k2(  E, B )  = k2(  B - 2 ’ 3 E )  . 1  

This is shown in figure 1 (c) where the numerically deduced group of tori located along 
the p axis left to the chaotic area are more steeply shaped than predicted by the formula 
( 1  1 )  with Solovev’s value k2  = f but are satisfactorily simulated by the same formula 
with k 2  = 0.8 (figure 1 ( c ) ‘ ) .  The assumption of the approximate constancy of A of the 
form (3) with k2 = 1, i.e. the constancy of At, is compatible with the proposal of the 
symmetry made by Clark (1981), according to which Z = A,JA,(-’ commutes approxi- 
mately with the diamagnetic Kepler Hamiltonian. 

We thank M Lakshmanan, K Nakamura and the members of our seminar group for 
providing us with many comments. Among them, S Adachi’s detailed analysis of 
Solovev’s averaging procedure was most helpful. 
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